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Abstract: There has been a growing interest in the neuroimaging community regarding resting state
data (i.e., passive mental activity) and the subsequent activation of the so-called default mode network
(DMN). Although this network was originally characterized by a pattern of deactivation during active
cognitive states, more recent applications of data-driven techniques such as independent component
analysis (ICA) have permitted the analysis of brain activation during extended periods of truly passive
mental activity. However, ICA requires the resultant components to be evaluated for “goodness of fit”
via either human raters or more automated techniques. To our knowledge, an investigation on the reli-
ability of either technique in determining the component that best corresponds to default-mode activity
has not been performed. Moreover, it is not clear how automated techniques, which are necessarily de-
pendent upon a template mask, are affected by the structures used to compose the mask. The current
study investigated both interrater (human-human) reliability and intermethod (human-machine) reli-
ability for determining DMN activation in 42 healthy controls. Results indicated that near perfect inter-
rater reliability was achieved, whereas intermethod reliability was only within the moderate range. The
latter was significantly improved via a weighted combination of the anterior and posterior cingulate
nodes of the DMN. Implications for fully automating the component selection process are discussed.
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INTRODUCTION

With the advent of advanced neuroimaging techniques
such as functional magnetic resonance imaging (FMRI)
and the arrival of increasingly sophisticated methods for
interpreting these data, the study of the human brain at
rest has flourished in recent years [Beckmann et al., 2005;
Binder et al., 1999; Biswal et al., 1995; Buckner et al., 2008;
Damoiseaux et al., 2006, Fox and Raichle, 2007; Gilbert
et al.,, 2007, Greicius et al., 2003; Gusnard and Raichle,
2001; Jafri et al., 2007, Mason et al., 2007, Morcom and
Fletcher, 2007; Raichle and Snyder, 2007; Raichle et al.,
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2001; Van de Ven et al., 2004]. In particular, there has been
increasing interest in the concept of a default mode net-
work (DMN), which exhibits coherent fluctuations during
passive mental activity [Buckner et al.,, 2008], becomes
deactivated during more demanding cognitive tasks
[Binder et al., 1999; Gusnard and Raichle, 2001; Shulman
et al., 1997], and which may serve as an intrinsic baseline
state [Raichle and Gusnard, 2005]. Although the existence
of the DMN has been investigated using multiple imaging
modalities including FMRI, PET, and EEG [Greicius et al.,
2003; Laufs et al.,, 2006; Raichle et al., 2001], controversy
remains regarding the significance and applicability of the
DMN model from both conceptual and quantitative per-
spectives [Gilbert et al., 2007; Mason et al., 2007; Morcom
and Fletcher, 2007]. Specifically, several important ques-
tions remain regarding the consistency and reliability of
the DMN over time, the analytic techniques used to char-
acterize the brain at rest, and how reliable human and
automated methods are in selecting DMN activity
[Morcom and Fletcher, 2007]. The current investigation
was conducted to rigorously address these important
methodological concerns and to develop standardized
methods that can be used to identify the DMN during the
collection of resting state FMRI data.

Originally, the DMN was defined in terms of regions
that were shown to be deactivated (hereafter referred to as
task-induced deactivations) during periods of demanding
mental activity [Binder et al., 1999; McKiernan et al., 2003,
2006; Shulman et al.,, 1997]. However, the magnitude of
task-induced deactivation has been linked to the cognitive
demands of tasks [Esposito et al., 2006; McKiernan et al.,
2003], suggesting that task-induced deactivations may not
be an ideal methodology for probing true passive mental
activity. The identification of DMN has more recently been
facilitated by the application of independent component
analysis (ICA) to more extended periods (e.g., minutes
rather than seconds) of resting state FMRI data, which per-
mits the blind-source separation of overlapping signals into
individual spatial or temporal components [Beckmann and
Smith, 2004; Calhoun and Adali, 2006; Calhoun et al., 2007;
McKeown et al., 1998, 2003; Van de Ven et al., 2004]. The
data-driven nature of ICA permits the identification of net-
works of activity that occur when the brain is truly at rest for
prolonged periods of time rather than examining the brain as
it “deactivates” from a task. Voxels and regions that exhibit
similar fluctuations in signal are subsequently grouped into
different components, which are thought to represent differ-
ent networks of correlated activity [Damoiseaux et al., 2006;
De Luca et al., 2006]. However, a potential weakness of this
data-driven approach is that the resulting components have
no specific order and, therefore, must be evaluated and
“selected” based on some preestablished criteria.

To date, the majority of researchers have relied on
human observers to pick the component that best repre-
sents the DMN in ICA studies of the resting state [Beck-
mann et al.,, 2005, Damoiseaux et al., 2006; De Luca et al.,
2006]. Although this system is practical, unresolved ques-

tions remain regarding interrater reliability both within
studies and across different institutional sites. More impor-
tantly, manual selection may be subject to human error
and is also a time consuming process in which all compo-
nents must be visualized and then carefully analyzed prior
to selecting the representative DMN component. An alter-
native approach is to spatially correlate the individual
[Calhoun et al.,, 2007; Van de Ven et al., 2004] components
with an ideal DMN template and then automatically select
the component with the highest correlation [Calhoun et al.,
2007; Greicius and Menon, 2004; Greicius et al., 2004; Van de
Ven et al.,, 2004]. The template may be determined from the
data collected during the study from a healthy group [Grei-
cius and Menon, 2004; Greicius et al., 2004;) or based on the
selection of regions from a stereotaxic atlas [Calhoun et al.,
2007; Van de Ven et al., 2004]. Of these two potential meth-
ods, a template based on a stereotaxic atlas is preferable to
increase reliability across different institutional sites.

However, determining the regions that constitute the
DMN is a prerequisite for developing a spatial template
(i.e., mask), which can subsequently be used to automate
and standardize the component selection process across
different institutions [Damoiseaux et al., 2006; Fox et al.,
2005; Fransson, 2005; Greicius et al., 2003; Mazoyer et al.,
2001; Raichle et al., 2001; Shulman et al., 1997]. Areas (see
Table I) that have been consistently reported to constitute
the DMN include the posterior cingulate (BA 23 and 31),
posterior parietal (BA 7, 39, and 40), dorsolateral and supe-
rior frontal (BA 8, 9, and 10), and anterior cingulate (BA 11
and 32) cortex [Buckner et al., 2008]. Of these regions, the
cingulate cortices may be particularly important for
default-mode activity. Specifically, the posterior cingulate
gyrus has been associated with high resting state metabo-
lism in the DMN [Gusnard and Raichle, 2001] and previ-
ous studies have typically used seeds from the cingulate
cortex to define the remainder of the DMN [Greicius et al.,
2003]. Other researchers have reported DMN activity in
the inferior temporal lobes (BA 19 and 37) [Damoiseaux
et al.,, 2006; Fox et al., 2005, Mazoyer et al., 2001; Raichle
et al., 2001; Shulman et al., 1997] although a recent review
[Buckner et al., 2008] suggests these temporal areas may
be less robust than the regions reported above. Therefore,
some inconsistencies still remain in determining the neuro-
nal regions that constitute the DMN.

To our knowledge, the reliability of automated versus
human selection methods has not been investigated, nor
have the instances in which the two methods of DMN
component selection may disagree. To address these limi-
tations in the current DMN literature, three aims related to
the DMN selection process in the framework of a data-
driven analysis are outlined. Two trained raters were
asked to independently identify the DMN in 42 subjects
following ICA analysis and rate their confidence in the
selected component. The individual raters were then com-
pared against each other and also against an automated
component selection routine based on an atlas-derived
template [Calhoun et al., 2007; Van de Ven et al., 2004].
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TABLE I. Commonly reported regions of DMN

Publication (first author)

Shulman et al., 1997; Raichle et al., 2001; Mazoyer et al., 2001; Greicius

et al., 2003; Fransson, 2005; Damoiseaux et al., 2006

Regions identified BA
Anterior cingulate cortex 11/32
Dorsolateral and superior 8/9/10

frontal gyrus
Inferior frontal cortex 47

Shulman et al., 1997; Raichle et al., 2001; Mazoyer et al., 2001; Greicius
et al., 2003; Fransson, 2005; Fox et al., 2005

Shulman et al., 1997; Mazoyer et al., 2001; Fransson, 2005

Shulman et al., 1997; Raichle et al., 2001; Mazoyer et al., 2001; Greicius

et al., 2003; Fransson, 2005; Fox et al., 2005; Damoiseaux et al., 2006

Shulman et al., 1997; Raichle et al., 2001; Mazoyer et al., 2001; Greicius

et al., 2003; Fransson, 2005; Fox et al., 2005; Damoiseaux et al., 2006

Shulman et al., 1997; Raichle et al., 2001; Mazoyer et al., 2001; Fox et al.,

2005; Damoiseaux et al., 2006

Posterior cingulate cortex 23/31
Posterior parietal lobule 7/39/40
Inferior temporal gyrus 19/37
Parahippocampal gyrus 30/36

Greicius et al., 2003; Fransson, 2005; Fox et al., 2005; Damoiseaux et al., 2006

This method was designed to satisfy the first aim of the
current study, which was to investigate both the reliability
between two trained individuals (i.e., interrater reliability)
and the reliability between human and more automated
selection techniques (i.e., intermethod reliability). Our sec-
ond aim was to examine how the length of data acquisi-
tion affected the quality of the DMN selection across both
human and automated techniques. We predicted that both
the human confidence ratings and magnitude of the corre-
lation coefficient would improve as a function of data col-
lection time. Our final aim was to investigate how altering
the neuronal nodes that compromised the DMN mask
would affect the subsequent reliability between automated
and human methods. We predicted that a standard mask,
comprised of the most commonly reported nodes of the
DMN, would outperform both a sparser (anterior and pos-
terior cingulate cortex only) and more complete (standard
plus inferior temporal cortex) mask in terms of reliability
and spatial correlation magnitude.

METHODS

Subjects

Data from 42 (15 females, mean age = 31.3 * 9.6 years)
subjects were examined in the current study. Subject data
were pooled across two different experiments that meas-
ured different aspects of selective attention; however, the
extended rest task was identical in both experiments and
collected in separate runs (see Task section). Potential
subjects with a history of neurological disease, major
psychiatric disturbance, substance abuse, or psychoactive
prescriptive medications were excluded from the study.
Written informed consent was obtained from all partici-
pants prior to data collection, according to institutional
guidelines at the University of New Mexico.

Task

All data were collected on a Siemens Sonata 1.5 Tesla
scanner. Subjects rested supine in the scanner with their

head secured by chin and forehead straps, with additional
foam padding to limit head motion within the head coil.
Presentation software (Neurobehavioral Systems) was used
for stimulus presentation and synchronization of stimulus
events with the MRI scanner. Visual stimuli were rear-
projected using a Sharp XG-C50X LCD projector on an
opaque white Plexiglas projection screen.

The resting state data in the current study were pooled
from two separate experiments. In both studies, alternating
runs of complex attentional tasks (two runs for Study 1
and three for Study 2) and resting state data (one run)
were collected. During both complex attention tasks, sub-
jects ignored information from one sensory modality while
performing a task based on information presented in an
opposite sensory modality. In Study 1 (N = 18), subjects
rhythmically tapped in time to either a visual (reversing
checkerboard) or auditory (pure tone) metronome while
ignoring a simultaneously occurring crossmodal distractor.
In Study 2 (N = 24), subjects were asked to perform a numeric
Stroop task in which they identified a target number pre-
sented in the visual or auditory modality while ignoring a
crossmodal distractor. The results from these separate atten-
tion tasks will be presented in other publications.

The resting state task was identical in both experiments.
Specifically, subjects were asked to relax and passively
stare at a fixation cross (visual angle = 1.54°) for 3 min
with their eyes open. Although research suggests that the
resulting patterns of brain activity are similar for para-
digms in which subjects keep their eyes opened or closed
[Fransson, 2005; Raichle et al., 2001], subjects were
requested to keep their eyes open to minimize the likeli-
hood that they would fall asleep and to decrease the elec-
trophysiological spectrum changes associated with sleep
[Laufs et al., 2006]. The sequence of complex attentional
and rest runs were repeated three times, resulting in three
resting runs collected for a total of 9 min.

MR Imaging

At the beginning of the scanning session, high resolution
T1 [TE (echo time) = 4.76 ms, TR (repetition time) = 12 ms,
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20° flip angle, number of excitations (NEX) = 1, slice thick-
ness = 1.5 mm, FOV (field of view) = 256 mm, resolution =
256 X 256] anatomic images were collected. For each rest
imaging series, 90 echoplanar images were collected using a
single-shot, gradient-echo echoplanar pulse sequence [TR =
2000 ms; TE = 36 ms; flip angle = 90°; FOV = 256 mm; matrix
size = 64 X 64]. The first two images of each run were elimi-
nated to account for T1 equilibrium effects, leaving a total of
88 images for the final analyses. Twenty-eight contiguous
sagittal 5-mm (Study 1) or 5.5-mm (Study 2) thick slices were
selected to provide whole-brain coverage (voxel size: 4 X 4 X
5mm>or4 X 4 X 5.5 mm°).

Data Analyses

Functional images were generated and processed using
a mixture of freeware and commercial packages including
the Analysis of Functional Neurolmages (AFNI) [Cox,
1996], GIFT [Calhoun, 2004], MATLAB (Mathworks, Sher-
born, MA) and FSL [Smith et al., 2004] packages. Time se-
ries images were first spatially registered (to the third
image from the first resting run) in both two- and three-
dimensional space to minimize effects of head motion,
temporally interpolated to correct for slice-time acquisition
differences, de-spiked, linearly detrended and spatially
blurred using a 10-mm Gaussian full-width half-maximum
filter.

The GIFT software package was then used to calculate
the individual components on a subject-by-subject basis.
Minimum description length (MDL) was used to establish
the number of components necessary to be generated [Cal-
houn et al.,, 2001; Rissanen, 1983]. The ideal number of
components ranged from 7 to 20 across the 42 subjects;
therefore, 20 components were generated for all subjects in
order to maintain Consistencyl. Components were calcu-
lated for each subject for 3 (corresponding to the first run),
6 (corresponding to the first two runs), and 9 (corre-
sponding to all three runs) minutes of data collection using
the Infomax algorithm [Bell and Sejnowski, 1995]. For the
first 3 min of data collection, single-subject single-run ICA
was performed. To calculate the components for 6 and 9
min, a group ICA [Calhoun et al., 2001] was implemented,

'A separate analysis was conducted to determine if using the
number of components specified by MDL on a subject-by-subject
basis would significantly alter current results. Specifically, the
MDL for each subject was first calculated for the 9-min dataset.
The subsequent number of output components from the ICA was
then restricted based on the MDL specifications (hereafter referred
to as MDL analysis). Resulting components were then correlated
with the standard mask to determine the component with the
highest spatial correlation and compared with similar values
obtained when components were fixed (N = 20) across all subjects
(hereafter referred to as the fixed analysis). Results from a t-test
indicated that there was no statistical difference (t47 = —1.30; P =
0.20) in the magnitude of the z-transformed spatial correlation
coefficient between the MDL and fixed analyses.

as a simple concatenation of the time-courses of the indi-
vidual runs cannot be performed since no baseline of rest-
ing state exists. The resulting components from individual
and multirun ICAs were then converted to a 1 mm? stand-
ard stereotaxic coordinate space [Talairach and Tournoux,
1988].

Rater Classification

The two human raters (A.F. and A.P.) initially trained
on a subset of 10 randomly selected, de-identified datasets.
The raters independently selected a single component
from the 20 choices that best resembled the previously
identified DMN, compared and then discussed their
results. This training process was repeated twice.

The raters then independently selected a single compo-
nent (from the 20 choices) that best resembled the previ-
ously identified DMN for each of the three time intervals
for all of the subjects. Raters also assigned a confidence/
quality rating to the component that was selected as most
representative of DMN. A Likert scale of 1-5 was utilized
with 1 indicating that the rater was “highly confident” that
their selection reflected the DMN and 5 indicating that the
rater was “not confident” (1 = Highly confident; 2 = Con-
fident; 3 = Uncertain; 4 = Questionable; 5 = Not Confi-
dent). In addition, the raters also identified a second com-
ponent that exhibited similar characteristics to the DMN,
but was not as strong as their first choice. The raters
selected the DMN components based on their spatial pat-
tern of activation and based on the associated component
time sequence, as the hemodynamic response of the DMN
is defined by a slow fluctuating pattern, typically oscillat-
ing below 0.1 Hz [Biswal et al., 1995; Cordes et al., 2001;
Fransson, 2005]. Interrater reliability for the first choice
component was assessed using Cohen’s Kappa Coefficient
[Cohen, 1960]. A bivariate correlational analysis was also
performed to assess agreement between the individual
rater’s confidence levels.

Following the independent rater assessments, a single
DMN component was selected. If both raters agreed on a
single DMN component for each subject/interval, no addi-
tional steps were taken. For the subjects/intervals in which
there was disagreement, the two raters co-jointly examined
all components and subsequently selected a consensus
DMN component. Therefore, for each subject at each time
interval, a single consensus component was identified that
most closely resembled the DMN network. This compo-
nent was then compared with the results of the spatial cor-
relation analyses in the intermethod reliability analyses.

Spatial Correlation

An automated method of DMN component selection
was then performed based on the magnitude of the spatial
correlation of each component with a series of DMN tem-
plate masks, which were constructed using the Wake For-
est University Pick atlas [Lancaster et al., 2000; Maldjian
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et al.,, 2003]. Given the variability in findings across previ-
ous DMN studies, three separate DMN template masks
were created to determine how the magnitude of the spa-
tial correlation and intermethod reliability varied as a
function of the mask.

Standard mask

This mask was created by selecting the anatomical
regions that have been most commonly reported to com-
prise the DMN network in previously published peer-
reviewed research. The labels from the Wake Forest Atlas
that constituted this mask included posterior cingulate
(BAs 23/31), posterior parietal lobes (BAs 7/39/40), supe-
rior frontal gyrus (BAs 8/9/10), and anterior cingulate cor-
tex (BAs 11/32) (see Table I; see Fig. 1).

Standard plus mask

This mask included the inferior temporal gyrus (BAs
19/37) in addition to the labels from the standard mask.

Cingulate only mask

Finally, a cingulate only mask was constructed by select-
ing only the anterior (BAs 11/32) and posterior (BAs 23/
31) cingulate from the atlas.

The three resulting masks were then blurred using a
10-mm Gaussian full-width half-maximum filter to match
the input data. A bivariate correlation analysis was then
performed between each of the masks and the 20 compo-
nents from the ICA to assess spatial correspondence. The
component that resulted in the maximal correlation with
each of the masks was then auto-selected to represent the
DMN network. Resulting r scores were then transformed
to a Fischer’s z to be used in all subsequent analyses.

RESULTS

The first set of analyses assessed whether there were
any differences in the degree of mean rater confidence or
spatial correlation with the standard mask across the two
different attention studies and whether these variables sig-
nificantly changed as a function of data acquisition time.
Specifically, a 2 X 3 mixed ANOVA was first performed to
determine if study (Study 1, Study 2) or run (Run 1, Run
2, Run 3) differentially affected the maximal spatial corre-
lation obtained with the standard mask. Results indicated
that the main effects of study and run, as well as the study
X run interaction, were not significant (P > 0.10). Next,
two 2 X 3 repeated-measures ANOVAs with study experi-
ment (Study 1, Study 2) as a between-subjects factor and
time of data collection (3, 6, and 9 min) as the within-sub-
ject factor were performed to investigate differences in the
confidence rating and the maximal spatial correlation with
the standard mask. Bivariate correlations indicated that
there were significant correlations between the two raters

A) Standard Mask

Z=-8
B) Standard Plus Mask

B 0204

| 0.4-06 O 06-08 O o081

Figure 1.

Cartoon depiction of the (A) standard mask, (B) standard plus
mask, and (C) cingulate only mask that were used in the princi-
pal analyses to determine magnitude of spatial correlation. All
regions were selected according to the Wake Forest Pick Atlas
as described in the methods. The colors of the masks corre-
spond to the weights assigned to each voxel following the spatial
blur, and therefore range between 0 and |. Axial slice locations
(2) are presented according to the origin in Talairach space.

at each epoch (rs ranging from 0.599 to 0.779; all Ps <
0.001), suggesting that the mean rater confidence interval
was an appropriate measure. For the analyses examining
confidence rating (see Fig. 2 for selected DMN components
corresponding to each confidence rating), only the main
effect of time was significant (F»go = 13.0, P < 0.001). Fol-
low-up, paired samples t-tests indicated that confidence
ratings were better for both the 6- (mean = 2.69; ty; = 3.4,
P < 0.001) and 9-min (mean = 2.61; ty; = 7.1, P < 0.001)
scans compared with the 3 min (mean = 3.06) scan. There
were no significant differences in confidence ratings
between 6 and 9 min (P > 0.10). Results from the correla-
tion analyses (see Fig. 3 for stratified presentation of DMN
components according to spatial correlations) with the
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standard mask indicated a main effect for time (Fpg0 =
18.1, P < 0.001), with a nonsignificant trend in the study
by time interaction (Fpg0 = 3.1, P = 0.06). Paired samples
t-tests indicated that z-transformed correlation coefficients
were greater for both the 6- (mean = 0.349; ty; = —4.1,
P < 0.001) and 9-min (mean = 0.355; t;; = —5.6, P <
0.001) scan compared with the 3-min (mean = 0.315) scan,

1) Highly confident

W 0204% @ 04-06% @O 06-08% O 081%

with no significant differences between 6 and 9 min scans
(P > .10). Because effects associated with study were not
significant in any of these analyses, this variable was
excluded from further processing.

Kappa (k)-coefficients were calculated to assess inter-
rater reliability between the two human assessors for all
840 components for each of the three time intervals (see
Table II). Results indicated that that there was almost
perfect agreement [Cohen, 1960] for 3 (x = 0.825; SE =
0.065), 6 and 9 min (both ¥ = 0.850; SE = 0.060 and SE =
0.062, respectively) of data collection between the two
human raters. Three tests using the weighted least-squares
(WLS) approach for comparing correlated ks [Barnhart and
Williamson, 2002] were performed to assess whether the «-
coefficients were significantly different across the different
acquisition lengths. However, there were no statistical dif-
ferences (P > 0.10) between the different interrater k-val-
ues as a function of time. For 100% of the cases in which
interrater reliability was not achieved, the first-choice com-
ponent selected by rater A was the second-choice compo-
nent selected by rater B, or vice versa.

Similarly, x-coefficients were calculated to assess the
intermethod reliability between the automated component
selection (spatial correlation) and the consensus compo-
nent (see Table II). Results indicated that at 3 min of data
collection there was only moderate agreement [Cohen,
1960] for the intermethod reliability with the standard
mask (k = 0.549; SE = 0.083), the standard plus mask (x =
0.473; SE = 0.083), and the cingulate only mask (kx = 0.574;
SE = 0.081). The k-coefficients across the three masks were
not statistically different by the WLS method (P > 0.10).
At 6 min of data collection, moderate agreement was
obtained for the standard mask (x = 0.449; SE = 0.085)
and the standard plus mask (x = 0.499; SE = 0.084),
whereas substantial agreement was achieved for the cingu-
late only mask (x = 0.674; SE = 0.080). WLS testing indi-
cated that the x-coefficient for the cingulate only mask was
significantly higher compared with the standard mask at 6
min of data collection (P < 0.05). Finally, moderate agree-
ment was achieved for the standard (x = 0.449; SE =
0.084) and cingulate only (x = 0.574; SE = 0.071) masks at
9 min of data collection; however, only fair agreement
[Cohen, 1960] was achieved for the standard plus masks

Figure 2.

Examples of five individual subject’s consensus DMN component
from the 9-min analyses. Components are displayed according to
the confidence rating assigned by both human raters on a 5-
point Likert scale (I = Highly confident; 2 = Confident; 3 =
Uncertain; 4 = Questionable; 5 = Not Confident). Following in-
dependent component analyses, the resulting component values
are not on any scale. Therefore, for display purposes and consis-
tency across subjects, these component maps were scaled and
thresholded based on the maximum voxel-wise value of the
component (see legend). Axial slice locations (Z) are presented
according to the origin in Talairach space.
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1) Correlation 0.4-0.5 (r=0.457)

~T [
’ )r} i
B 0204% M 0406% O 06-08% 0O 081%

Figure 3.

Examples of three individual subject’s DMN components that
were selected (i.e.,, maximum correlation) during the automated
procedure using the standard mask. Selected components were
stratified into three categories according to spatial correlation
ranges, and the exact value of the selected component is pre-
sented in parenthesis. For display purposes and consistency
across subjects, resultant component maps were scaled and
thresholded based on the maximum voxel-wise value of the
component (see legend). Axial slice locations (Z) are identical to
those presented in Figure 2.

for the same time period. There were no statistical differ-
ences (P > 0.10) in the magnitude of the «-coefficients
across the three different masks.

A total of nine WLS tests (three at each time period)
were also performed to compare the k-coefficients between
the interrater and the intermethod reliability methods for
selecting the DMN component. The interrater k-coefficients
were significantly (P < 0.05) higher compared with the
intermethod reliability obtained using the standard and
standard plus masks across the 3-, 6-, and 9-min time peri-
ods. The interrater x-coefficients were also significantly
higher (P < 0.05) than the intermethod reliability coeffi-
cients obtained using the cingulate only mask at 3 and
9 min. At 6 min of data collection, a nonsignificant trend
(P = 0.098) was observed.

Next, 1 X 3 (standard, cingulate only, standard plus)
repeated-measures ANOVAs were performed to compare
the z-transformed correlation coefficients for the different
masks for each of the three different periods of data collec-
tion. Results indicated a main effect of mask for 3 (Fp5, =
6.4, P < 0.005), 6 (F2,32 = 12,5, P < 0.001), and 9 (Fz,sz =
5.7, P < 0.005) minutes of data collection. Follow-up t-tests
indicated that the coefficients were greater for both the
standard (mean = 0.316) compared with the standard plus
(mean = 0.289) mask (t5; = 10.7, P < 0.001) and for cingu-
late only (mean = 0.327) compared with standard plus
mask (fy3 = 3.0, P < 0.005) at 3 min of data collection.
There were no significant differences in the correlation
coefficient between the standard and cingulate only mask
(P > 0.10). For 6 min of data collection, the standard

(mean = 0.349; ty; = 9.6, P < 0.001) and cingulate only
(mean = 0.379; t;; = 4.2, P < 0.001) masks exhibited a
higher coefficient than the standard plus mask (mean =

0.323). In addition, the spatial correlation was also signifi-
cantly greater for the cingulate only compared with the
standard mask (t;; = —2.2, P < 0.05). Finally, for 9 min of
data collection, the standard (mean = 0.355; f;; = 12.5,
P < 0.001) and cingulate only (mean = 0.369; ty; = 2.8,
P < 0.01) masks exhibited higher coefficients than the
standard plus mask (mean = 0.327) but did not statisti-
cally differ between each other (P > 0.10).

Supplementary Analyses

Contrary to our predictions, current results indicated a
slight improvement in performance (magnitude of spatial
correlation and k-coefficients) for the cingulate only mask
compared with the standard mask. Therefore, differential

TABLE Il. x Coefficients and agreement ratios for interrater and intermethod reliability

3 minutes 6 minutes 9 minutes Average
Interrater 0.825 k (AP) 35/42 Cases 0.850 k (AP) 36/42 Cases 0.850 k (AP) 36/42 Cases 0.841 k (AP)
Intermethod (standard mask) 0.549 k (M) 24/42 Cases  0.449 k (M) 20/42 Cases  0.449 k (M) 20/42 Cases  0.482 k (M)
Intermethod (standard plus mark) 0.473 k (M) 21/42 Cases  0.499 k (M) 22/42 Cases  0.398 k (F) 18/42 Cases 0.467 k (M)
Intermethod (cingulate only mask) 0.574 k (M) 25/42 Cases  0.674 k (S) 29/42 Cases 0.574 k (M) 25/42 Cases  0.607 k (S)
Intermethod (standard weighted mask®) 0.699 k (S) 30/42 Cases 0.649 k (S) 28/42 Cases 0.624 k (S) 27/42 Cases 0.657 k (S)

F, Fair agreement; M, moderate agreement; S, Substantial agreement; AP, Almost perfect agreement.
?The standard weighted mask was constructed to conduct supplementary analyses.
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weighting parameters were assigned to different nodes of
the standard mask to determine if the performance could
be further improved in the automated DMN selection rou-
tine. Specifically, a weighting factor of 3 was assigned to
the nodes corresponding to both the anterior and posterior
cingulate gyrus, whereas the remaining nodes of the stand-
ard mask remained weighted at 1. This mask was then
blurred with a 10-mm Gaussian kernel, and spatial correla-
tions and intermethod reliability were recalculated. WLS
tests indicated that the intermethod «-coefficients were sig-
nificantly higher (P < 0.05) for the standard weighted com-
pared with the standard mask at 3 (x = 0.699; SE = 0.076)
and 6 (k = 0.649; SE = 0.081) minutes of data collection,
with a nonsignificant trend present for 9 (x = 0.624; SE =
0.071) min of data collection (P = 0.054). When comparing
interrater and intermethod reliability methods, the inter-
rater reliability again outperformed the intermethod reli-
ability with the standard weighted mask at both 6 and
9 min of data acquisition (P < 0.05), but no differences
were noted at 3 min (P > 0.10).

A 2 X 3 repeated measures ANOVA [Mask (standard
vs. standard weighted) X Time (3, 6, and 9 min)] indicated
a significant effect of mask (F;4; = 34.2, P < 0.001) and of
time (Fy141 = 37.2, P < 0.001) for the magnitude of the z-
transformed correlation coefficient. Follow-up t-tests indi-
cated that the magnitude of the correlation was greater for
the standard weighted (mean = 0.386) compared with
standard (mean = 0.340) mask (f4; = 5.84, P < 0.001). The
effects of time were similar to those reported for the stand-
ard mask and are not repeated here. In addition, a qualita-
tive examination of the results from the standard mask
analyses indicated that one of the three components with
the highest spatial correlation corresponded to the consen-
sus component selected by the human raters in 88.1% of
the cases. For all of these components (126 components =
3 components per subject X 42 subjects), the majority of
the power spectrum (above 50%) was concentrated below
0.1 Hz. In contrast, results from the standard weighted
mask analyses indicated that one of the top three compo-
nents always (100%) corresponded to the human selected
consensus component.

Finally, the performance of the standard mask (derived
from a stereotaxic atlas) was directly compared with the
performance of a DMN template empirically derived from
a subset of the subjects’ data, as has been done in previous
studies [Greicius and Menon, 2004; Greicius et al., 2004].
Specifically, the averaged DMN derived from Study 2 (N
= 24) was used as a template mask for Study 1 (N = 18).
Results indicated that the spatial correlation of the maxi-
mal component was significantly higher with the template
mask (mean = 0.58987 * 0.07729) compared with the ster-
eotaxically created standard mask (mean = 0.32982 =*
0.04836; t = 12.45, P < 0.001). However, there was not any
significant improvement in the intermethod reliability
between the template mask (12 consistently identified com-
ponents with empirically determined mask) and the stand-
ard mask (11 consistently identified components).

DISCUSSION

The primary aim of the current experiment was to exam-
ine the reliability of two popular methods for detecting the
component that was most representative of DMN activity
during ICA analyses. Although several previous studies
have utilized data-driven techniques to assess functional
activity during the resting state, to date there has not been
an assessment of how reliable DMN selection is using ei-
ther manual selection [Beckmann et al., 2005; Damoiseaux
et al., 2006; De Luca et al., 2006] or more automated meth-
ods [Calhoun et al., 2007; Greicius and Menon, 2004; Grei-
cius et al., 2004; Van de Ven et al., 2004]. Results indicated
that, although almost perfect agreement was reached
between two highly trained manual raters (i.e., interrater
reliability), agreement between automated routines (spatial
correlation analyses) and manual raters (i.e., intermethod
reliability) was only in the moderate range [Cohen, 1960].
To our knowledge, this is the first demonstration of the
reliability of DMN activity by independent human raters
during longer epochs of uninterrupted passive mental ac-
tivity in a data-driven analysis technique. In the cases
where the two human raters did not agree on their first
choice component (~15% across all three intervals), there
was 100% agreement among the top two choices. These
results are consistent with previous findings of multiple
spatially correlated networks during passive mental activ-
ity [Damoiseaux et al., 2006; De Luca et al., 2006] and sug-
gest that more than one component may be associated
with DMN activity.

Moreover, the quantity of time allocated to passive men-
tal activity significantly impacted both indices of quality
for DMN activity. Specifically, the magnitude of both the
spatial correlation and rater confidence level significantly
improved as a function of time from 3 min of data collec-
tion to 6 min of data collection. However, there were no
substantial differences between the indices of quality at
the 6- compared with 9-min intervals. Collectively, these
results suggest that a qualitative and reliable assessment of
passive mental activity can be obtained in approximately a
6-minute epoch of data collection. Determining the mini-
mum amount of time necessary for the reliable assessment
of DMN activity will be crucial for determining applicabil-
ity of resting-state scans in clinical applications such as the
diagnosis of Alzheimer’s dementia [Greicius et al., 2004],
where time is often a critical constraint in the collection of
movement-free data.

Only moderate agreement [Cohen, 1960] was achieved
between human and more automated routines for selecting
the DMN based on a standard mask, with intermethod
reliability occurring for only ~51% of the cases. Human
raters were adopted as the ground truth in the current
experiment as the majority of previous studies have relied
on human intervention to select DMN activity during
data-driven approaches [Beckmann et al., 2005, Damoi-
seaux et al., 2006; De Luca et al., 2006]. However, to date,
a gold standard or computational formula for identifying

¢ 2300 ¢



+ Selection of the DMN

the DMN does not exist, which partially explains why
DMN activity remains an active controversy in the field
[Morcom and Fletcher, 2007]. Current findings suggest that
methodological approaches for DMN selection are an im-
portant step in determining DMN activity. Moreover, cur-
rent results also suggest that previous studies that relied
on a spatial coefficient to select the DMN either by using a
map derived from a stereotaxic atlas [Calhoun et al., 2007;
Van de Ven et al., 2004] or a map empirically derived
from an independent group of healthy controls [Greicius
and Menon, 2004; Greicius et al., 2004] may not readily
generalize to human selection methods. However, current
results also indicated that the three most highly correlated
components corresponded to the component selected by
human raters in the majority of cases (88.1% with the
standard mask and 100% with the standard weighted
mask), suggesting that results from human and automated
techniques may not be too discordant.

Current results also provide preliminary evidence that
differentially weighting certain nodes of the DMN may
increase intermethod reliability. Specifically, supplemen-
tary analyses indicated that a standard mask preferentially
weighted toward the anterior and posterior cingulate
gyrus achieved substantial intermethod agreement and
was associated with higher magnitudes of the correlation
coefficient compared with the standard mask. Previous
researchers have utilized the anterior and posterior cingu-
late as seed voxels to detect the remainder of the DMN
[Fox et al., 2005; Fransson, 2005; Greicius et al., 2003; Shul-
man et al., 1997] and resting-state metabolism has shown
to be the highest in the posterior cingulate gyrus [Gusnard
and Raichle, 2001]. Meta-analyses of task-induced deactiva-
tions during five separate tasks also identified the anterior
cingulate gyrus as one of the only regions that demon-
strated consistent deactivation [Wicker et al., 2003]. Finally,
a connectivity analysis of the intrinsic correlations within
the DMN demonstrated that the medial frontal and poste-
rior cingulate regions may serve as a central hub for the
DMN [Buckner et al., 2008]. These findings reinforce the
idea that the anterior and posterior cingulate cortex may
form the core of the DMN that is consistently activated in
humans during undirected mental states [Buckner et al.,
2008]. Moreover, our current finding of a lower spatial cor-
relation with the standard plus mask is consistent with the
suggestion that the medial temporal lobe system may form
an interacting subsystem with the DMN [Buckner et al,,
2008].

In spite of the lower intermethod k-values obtained in
the current study, the automatic or semiautomatic detec-
tion of the DMN remains an important goal for quantify-
ing passive mental activity during rest for several reasons.
Foremost, manual selection of the DMN requires extensive
human resources. For example, in the current experiment
each human rater was asked to visually evaluate 840 dif-
ferent components (42 subjects X 20 components), greatly
increasing the likelihood of fatigue and error. Second is ob-
jectivity; an algorithm is typically more consistent and

unbiased compared with human methods. This may be
especially important for clinical applications in which the
population of interest is too impaired to perform cognitive
tasks, but where rater bias may play an important role in
determining outcome measures (e.g., using DMN activity
as diagnostic criteria for differentiating clinical from
healthy populations). Indeed, DMN activity has already
proved to be fertile ground for the advancement of the
understanding of various areas of clinical research includ-
ing schizophrenia [Calhoun et al.,, 2007; Garrity et al.,
2007] and Alzheimer’s disease [Greicius et al., 2004], sug-
gesting neuroimaging studies of passive mental activity
may eventually contribute to difficult differential diagnoses.
Current and previous findings suggest that a mixture of
manual and automated techniques may provide the best
approach for selecting the DMN component during data-
driven analyses. For example, previous work [Damoiseaux
et al.,, 2006] has demonstrated that the power spectrum of
the DMN component may contain important features that
could potentially be used to improve the selection process
via machine learning algorithms. Specifically, the peak of
the power spectrum of the DMN component usually
occurs below 0.1 Hz [Biswal et al.,, 1995; Cordes et al.,
2001; Fransson, 2005; Greicius et al., 2004]. In the current
experiment, the majority (>50%) of the frequency distribu-
tion and the peak of the power spectrum were below 0.1
Hz for the top three correlated components. This temporal
information could be then used to reduce the number of
components that were entered into either an automated
(e.g., spatial correlation) or manual selection process,
thereby greatly reducing computational and human time.
Current results also demonstrated exact correspondence
between the human consensus component and one of the
three components with the highest correlation selected by
the standard weighted mask. Therefore, when necessary to
identify a single subject DMN, one could calculate the cor-
relation of the components with a stereotaxically defined
mask followed by human selection of one of the top three
correlated components. This would drastically reduce the
time necessary to manually select the DMN and greatly
increase the objectivity of the manual selection process. In
the current application, this approach would have reduced
the number of components that required visual examina-
tion from 840 to 126, thus saving substantial human com-
putational resources and reducing the likelihood of error.
Finally, a question remains regarding the use of a stereo-
taxic (generated through anatomical labels) or empirically
(generated from DMN data) derived template as a spatial
mask if semiautomatic or fully automatic techniques are to
be adopted [Calhoun et al., 2007; Greicius and Menon,
2004; Greicius et al., 2004; Van de Ven et al., 2004]. In the
current study, an empirically derived template mask sig-
nificantly improved the spatial correlation coefficient com-
pared with a stereotaxic mask but did not improve the
intermethod reliability. This improvement in the correla-
tion coefficient was expected given that the data were col-
lected in a similar population under identical experimental
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conditions. A more informative comparison would contrast
the different masks’ performance with data collected at
different scanners at different institutions with different
sample characteristics. However, current results do suggest
that the observed magnitude of the spatial correlation is
very dependent on the method used to generate the spatial
template, which may have more importance for clinical
studies. The benefit of a mask derived from a stereotaxic
atlas is that it can be standardized and easily reproduced
across different research institutions so that individual
studies become less dependent on previous data, sample
characteristics or manual selection of the DMN component.
In summary, the reliable identification of the DMN is a
crucial first step for any study using a data-driven analysis
technique to quantify brain activation during passive men-
tal activity. Current results are the first to suggest that
high levels of interrater reliability can be achieved during
manual selection, whereas intermethod reliability (i.e.,
manual and automated selection routines) was only in the
moderate range. Current results suggest that automated
techniques may be useful as a first step for reducing the
number of components followed by a more thorough eval-
uation by human raters. The use of a standardized tem-
plate and methodology for automating DMN selection
should reduce some of the methodological concerns
regarding extended periods of passive mental activity
while increasing the reproducibility of results across differ-
ent sites. Future studies should determine whether weight-
ing different nodes of the DMN or other data features can
be utilized to increase the reliability of these automated
techniques as was observed in the current study.
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