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Abstract: A number of functional magnetic resonance imaging (fMRI) studies reported the existence of
default mode network (DMN) and its disruption due to the presence of a disease such as Alzheimer’s
disease (AD). In this investigation, first, we used the independent component analysis (ICA) technique
to confirm the DMN difference between patients with AD and normal control (NC) reported in previ-
ous studies. Consistent with the previous studies, the decreased resting-state functional connectivity of
DMN in AD was identified in posterior cingulated cortex (PCC), medial prefrontal cortex (MPFC), in-
ferior parietal cortex (IPC), inferior temporal cortex (ITC), and hippocampus (HC). Moreover, we intro-
duced Bayesian network (BN) to study the effective connectivity of DMN and the difference between
AD and NC. When compared the DMN effective connectivity in AD with the one in NC using a non-
parametric random permutation test, we found that connections from left HC to left IPC, left ITC to
right HC, right HC to left IPC, to MPFC and to PCC were all lost. In addition, in AD group, the con-
nection directions between right HC and left HC, between left HC and left ITC, and between right IPC
and right ITC were opposite to those in NC group. The connections of right HC to other regions,
except left HC, within the BN were all statistically in-distinguishable from 0, suggesting an increased
right hippocampal pathological and functional burden in AD. The altered effective connectivity in
patients with AD may reveal more characteristics of the disease and may serve as a potential
biomarker. Hum Brain Mapp 32:1868–1881, 2011. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

The existence of the default mode network (DMN) in
the human brain was evidenced firstly via positron emis-
sion tomography (PET) and then primarily via functional
magnetic resonance imaging (fMRI) [Buckner et al., 2008;
Raichle et al., 2001]. Viewed as an integrated system,
DMN consisted of a specific set of brain regions and was
initially characterized as persistent task-independent
decreased neural activity during goal-oriented tasks [Grei-
cius et al., 2003; Raichle and Snyder, 2007; Raichle et al.,
2001]. DMN was then observed in the absence of any
intentionally introduced cognitive task. A number of stud-
ies were conducted attempting to understand the DMN’s
components [Damoiseaux et al., 2006; Fox et al., 2005;
Fransson, 2005; Greicius et al., 2003, 2004; Mazoyer et al.,
2001; Raichle et al., 2001; Vincent et al., 2006], function
[Gilbert et al., 2007; Hahn et al., 2007; Raichle et al., 2001;
Svoboda et al., 2006], its relevance to diseases [Bluhm
et al., 2007; Celone et al., 2006; Cherkassky et al., 2006;
Greicius et al., 2004; Lustig et al., 2003; Rombouts et al.,
2005; Sorg et al., 2007; Wang et al., 2006], and its interac-
tion with other resting-state networks [Demirci et al., 2009;
Liao et al., 2010; Margulies et al., 2007; Stevens et al.,
2009]. By comparing the consistent fMRI signal increases
during passive task states to a wide range of active cogni-
tive tasks [Mazoyer et al., 2001; Raichle et al., 2001; Vin-
cent et al., 2006] or exploring the intrinsic activity of the
resting-state data [Damoiseaux et al., 2006; Fox et al., 2005;
Fransson, 2005; Greicius et al., 2003, 2004], a number of
studies consistently identified the DMN core brain regions
such as medial prefrontal cortex (MPFC), posterior cingu-
late cortex (PCC), inferior parietal cortex (IPC), inferior
temporal cortex (ITC), and (para)hippocampal formation
[Buckner et al., 2008]. The specific anatomic locations of
these regions together with their task-induced deactiva-
tions suggested possible roles that DMN played, such as
monitoring the external environment [Ghatan et al., 1995;
Gilbert et al., 2007; Hahn et al., 2007; Raichle et al., 2001]
and supporting internal mentation [Kelley et al., 2002;
Mitchell et al., 2006; Raichle et al., 2001].

DMN findings above were primarily investigated in nor-
mal healthy subjects. DMN alterations in neurodegenera-
tive disorders have also been investigated. Using fMRI for
example, Greicius et al. [2004] revealed the link between
clinical symptoms and disruption of DMN due to Alzhei-
mer’s disease (AD) [Greicius et al., 2004].

AD is one of the most common neurodegenerative dis-
orders. It is clinically characterized by progressive cogni-
tive decline and neuropsychiatric symptoms [Blennow
et al., 2006]. Using PET and single-photon emission com-
puterized tomography, reduced activity in PCC, parietal,
temporal, and prefrontal cortices has been observed con-
sistently [Johnson et al., 1998; Matsuda, 2001; Minoshima
et al., 1997]. It is believed that decreased PCC activity in
AD reflected decreased connectivity with medial temporal
lobe (MTL) structures, such as the hippocampus (HC),

which is among the first regions targeted by AD pathology
[Aupee et al., 2001; Della-Maggiore et al., 2000; McIntosh
et al., 1996]. Using fMRI and independent component anal-
ysis (ICA) to study the DMN difference between AD and
normal control (NC), Greicius et al. [2004] found that rest-
ing-state activity in PCC and HC was decreased in AD
compared to healthy aging. These AD-associated changes
suggest a potential role of DMN imaging as a noninvasive
biomarker of AD [Greicius et al., 2004]. In another study,
using correlation analysis with bilateral anterior HC as the
seed region, Wang et al. [2006] found that functional con-
nectivity between the right HC and a set of regions such
as the MPFC, right ITC, right precuneus, right superior,
and middle temporal cortex (S/MTC), and PCC was dis-
rupted in AD [Wang et al., 2006]. This disrupted corre-
lated hippocampal connectivity is consistent with the
finding of decreased hippocampal activity associated with
suppression of the DMN in AD demonstrated by ICA
techniques [Celone et al., 2006; Greicius et al., 2004].
Again, these findings were suggestive that the dysfunction
may contribute to deficits of cognition characteristic of AD
and may serve as a biomarker for diagnosis and monitor-
ing of AD progression.

To use the functional connectivity as a potential bio-
marker, we note that its association with the disease sever-
ity measures such as Mini Mental State Examination
(MMSE) or Clinical Dementia Rate (CDR) should be also
assessed in addition to its ability to differentiate patients
with AD from healthy elderly subjects, and eventually
from other dementias. As stated below, this association
investigation will be part of this study.

The functional connectivity for DMN as depicted by
ICA, correlative analysis and other reported analytical
techniques, is one of two connectivity types. In the analy-
sis of neuroimaging time-series, functional connectivity is
defined as the temporal correlations between spatially
remote neurophysiological events [Friston et al., 1993]. Yet,
the functional connectivity does not provide any direct
insight into how these correlations are mediated. The sec-
ond type of connectivity is the so-called effective connec-
tivity. This refers to the influence one neuronal system
exerts over another [Friston, 1994]. Although DMN func-
tional connectivity differences have been well investigated
between AD and NC, the effective connectivity is yet to be
explored. Of course, real causal relationship cannot simply
be claimed out of effective connectivity analysis.

Traditional effective connectivity analysis approaches
include structural equation modeling (SEM) [McIntosh
and Gonzalez-Lima, 1994], dynamic causal modeling
(DCM) [Friston et al., 2003], and Granger causality map-
ping (GCM) [Goebel et al., 2003]. The SEM requires speci-
fication of brain regions and especially the a priori
relationships among them based on anatomical data, and
it uses the covariance matrix among brain regions to char-
acterize the behavior of a neural system. The DCM models
temporal interactions at the neuronal level, and it
describes the dynamic and nonlinear characteristic of
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neural systems using bilinear differential equations, com-
bined with a hemodynamic forward model. The GCM
uses a vector autoregressive model to analyze the func-
tional interactions among regions, which is a pair-wise
connectivity analysis rather than a global representation of
a neural system. In general, both SEM and DCM are hy-
pothesis-driven approaches, which need prior connectivity
models to begin with [Zheng and Rajapakse, 2006]. As
such, they provide more theoretically powerful inference.
On the other hand, however, much stronger assumptions
are needed.

Investigating silent word reading and counting Stroop
task, Zheng et al. [2006] recently proposed to use the
Bayesian network (BN) learning approach, a data-driven
method, to characterize effective connectivity patterns
among brain regions in fMRI studies. BN can learn the
global effective connectivity pattern, rather than pair-wise
connectivity [Zheng and Rajapakse, 2006].

In fact, the BN learning approach has had wide applica-
tions for general complex systems before its recent intro-
duction to fMRI studies. As a tool of uncertainty
reasoning, it was developed by combing the probability
statistics and graph theory and originated in the mid-
1980s addressing the issue of uncertainty in the fields of
artificial intelligence and machine learning [Olmsted, 1983;
Shachter and Kenley, 1989]. This approach needs no
assumption of any prior models and can provide a global
representation of a system automatically learned from data
in a completely exploratory manner [Zheng and Rajapakse,
2006]. A BN model is a directed acyclic graph that encodes
a joint probability distribution over a set of random varia-
bles, represented as nodes of the acyclic graph. Arcs
between nodes signify the directional dependence relations
among these random variables, and the absence of arcs
refers to conditional independencies. The dependencies
are qualified by the conditional probability of each node
given its parent nodes in the network. Compared to other
effective connectivity approaches, BN is relatively novel in
the neuroimaging study of AD. Exploring the global effec-
tive connectivity pattern without any prior assumption,
we hope the application of BN would provide us with
more information specific to AD.

In this study, we used Group ICA to isolate the DMN
map for each of the two groups and examined the dis-
rupted functional connectivity in the network of AD
patients as well as its association with clinical measures
MMSE and CDR. We used the linear Gaussian BN [Geiger
and Heckerman, 1994; Heckerman, 1995; Li et al., 2009;
Shachter and Kenley, 1989] to construct the effective con-
nectivity patterns of the DMN in the groups of NC and
AD, respectively. Nodes in the network are the core DMN
brain regions, which determined by ICA in the current
study. In addition to the BN effective connectivity investi-
gation, we are interested in examining its difference
between AD and NC. For this, we introduced statistical in-
ference procedure, random permutation test. With the dif-
ference explored, BN may ultimately reveal a connectivity

profile specific to clinical AD facilitating its use as an
imaging marker for AD.

MATERIALS AND METHODS

Participants

Fifteen AD patients [6 males and 9 females, ages
between 53 and 79 years (mean � SD: 64.0 � 8.3 years
old), right-handed, mean MMSE: 12, range, 0–20] and 16
elderly NCs [7 males and 9 females, ages between 47 and
79 years (65.1 � 9.2 years old), right-handed, mean MMSE:
29, range, 27–30] were scanned during the resting state
condition. Subjects were instructed simply to keep their
eyes closed and not to think of anything in particular.
Sedation was not used for any patients, and significant
movement was found on none of them. Handedness was
determined by the Edinburgh Inventory [Oldfield, 1971].
All participants were recruited and scanned at Tiantan
Hospital, Beijing, China. The diagnosis of AD fulfilled the
International Statistical Classification of Diseases and
Related Health Problems 10th Revision (ICD-10) criteria
for dementia. The AD patients were free of other diseases,
and the healthy controls were free of any known medical,
neurological, and psychiatric disorders. Before this study,
none of the patients had been on any medications for the
cognitive impairments of AD and other classes of psycho-
therapy. Five of the 15 patients had a CDR score of 1 and
6 had CDR 2. The remaining four patients had CDR 3. We
consider those patients with a CDR score of 1 to be mild,
those with a CDR 2 to be moderate and 3 to be severe de-
mentia [Morris, 1993]. The purpose of the study was
explained to the participants and/or caregivers. All partic-
ipants gave written informed consent approved by a local
institutional review board before the experiment. The MR
scans were read clinically, and no patient included in this
study was with evidence of a stroke or other focal
pathology.

Data Acquisition

MRI scanning was performed on 3-Tesla Siemens
whole-body MRI system at Tiantan Hospital in Beijing,
China. Gradient echo-planar imaging was used to acquire
20 axial slices (6-mm thickness, 0-mm gap, field of view,
256 � 256 mm2; matrix size, 64 � 64; repeat time, 2,000
ms; echo time, 30 ms; flip angle, 85�; 250 repetitions per
time series). A high-resolution T1-weighted 3D MRI
sequence with the following parameters was also acquired:
1-mm thickness; 0-mm gap; repeat time, 2,100 ms; echo
time, 3.25 ms and flip angle, 10�.

Data Preprocessing

For each participant, the original first five-time func-
tional images were discarded to allow for equilibration of
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the magnetic field. All of the preprocessing steps were per-
formed using SPM2 (http://www.fil.ion.ucl.ac.uk/spm).
They included within-subject interscan realignment to cor-
rect possible patient movement, between-subject spatial
normalization to a standard brain template in the Montreal
Neurological Institute coordinate space and smoothing by
a Gaussian filter with a full width at half maximum of 8
mm. Following this, the linear trend with regards to time
was removed by linear regression.

Functional Connectivity Analysis

The preprocessed data of all participants were entered
into the Group ICA program in the fMRI Toolbox (GIFT,
http://icatb.sourceforge.net/), which included twice prin-
ciple component analysis (PCA) reduction, ICA separation,
and back-reconstruction [Calhoun et al., 2001b]. The opti-
mal number of principal components 59 for AD and 55 for
NC, respectively, were estimated based on the minimum
description length. In the first round of PCA, the data for
each individual subject were dimension-reduced to the
optimal number temporally. After concatenation across
subjects within groups, the dimensions were again
reduced to the optimal numbers via the second round of
PCA. Then the data were separated by ICA using the
Extended Infomax algorithm [Lee et al., 1999]. After ICA
separation, the mean ICs and the corresponding mean
time courses over all the subjects were used for the back-
reconstruction of the ICs and the time courses for each
individual subject [Calhoun et al., 2001b].

The independent component that best matched the
DMN as previously reported was selected in each group.
To do this, a DMN template was developed based on a
dataset of regions reported previously [Greicius et al.,
2004]. Each region in the template was a sphere with a ra-
dius of 5 mm (varying size of the sphere had no effect for
the component identification). To determine the DMN
among a number of independent components for a subject,
the average intensity over voxels within each of the
spheres minus that over voxels outside all spheres was for
each component. Finally, the component that had the best-
fit was designated as DMN for this subject. After the con-

version of the intensity values in each IC spatial map to Z-
scores, one sample t-test (false discovery rate, FDR; P ¼
0.05) was then performed to determine the DMN for each
of the two groups [Calhoun et al., 2001a]. Between group
DMN differences was determined by two sample t-tests
(FDR, P ¼ 0.05).

Defining the Regions of Interest

On the basis of the functional connectivity findings, we
identified several core brain regions for a separate exami-
nation of their correlations with MMSE, the disease sever-
ity measure. Moreover, the effective connectivity among
these regions was investigated by constructing the BN
models separately for AD and NC groups. The BN-based
effective connectivity group difference was then assessed
using the random permutation testing.

We first identified eight ROIs from the DMN functional
connectivity map for NC and AD separately, which were
used as the nodes of the BN models. Each of the eight
ROIs was the intersection of the corresponding region
defined by Anatomical Automatic Labeling atlas toolbox
[Mazoyer et al., 2001] and the within group one sample t-
test map with a cut-off threshold at P ¼ 0.05 FDR. The list
of ROIs is shown in Tables I and II. For each ROI, resting-
state time series were extracted by averaging the inten-
sities over all voxels within the ROI at each time point for
each individual. Time series of all the subjects within each
group were then averaged to generate a single time series
at each ROI for each group. Because there was no survived
voxels at FDR P ¼ 0.05 for left and right HC in the AD
group, these two regions were defined with more lenient
threshold of P ¼ 0.1, uncorrected.

Correlating the Disease Severity With the

Functional Connectivity Measures From the

Core Brain Regions

The average Z-score and the volume of the core brain
regions defined over the IC map for each subject repre-
sented the intensity and the spatial extent of resting

TABLE I. Regions in the DMN map of NC group (one sample t-test, FDR, P 5 0.05, BA: Brodmann area)

Brain region BA T value

Talairach coordinate

Volumex y z

Posterior cingulate cortex (PCC) 23 17.42 3 �51 17 1184
Left inferior parietal cortex (lIPC) 40 12.55 �48 �57 31 344
Medial prefrontal cortex (MPFC) 10 12.03 3 45 12 953
Right inferior parietal cortex (rIPC) 40 12.03 53 �57 29 411
Right inferior temporal cortex (rITC) 21 8.54 62 �7 �16 251
Left inferior temporal cortex (lITC) 21 7.92 �59 �12 �13 486
Left hippocampus (lHC) 36 4.44 �30 �33 �5 135
Right hippocampus (rHC) 28 4.75 24 �22 �9 110
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activity. They were extracted for all subjects and used to
investigate their relationship with the disease severity
measures, MMSE and CDR, with the use of linear regres-
sion analysis.

Effective Connectivity Analysis

For completeness, we briefly described the BN learning
procedure here. For more comprehensive, detailed discus-
sion, please refer to Geiger and Heckerman [1994], Hecker-
man [1995], and Shachter and Kenley [1989]. A BN is
simply a graphical representation of the joint probability
distribution over a set of random variables X ¼ {X1, X2,
: : : Xn}, which are the nodes of the graph, G. In our study,
n ¼ 8, and Xi is the measurements from ROI i. Given the
nodes, the graph is determined by H representing the set
of the conditional probability distribution at each of the
nodes in the network. For each node (variable) Xi (i ¼ 1, 2,
: : : n), the ith entry of H is hXi jpaðXiÞ ¼ pðXijpaðXiÞÞ, denot-
ing the conditional distribution of Xi given its parent node
pa(Xi). With the assertions of conditional dependencies
and independencies encoded by the network, the joint
probability distribution PB (X1, X2, : : : Xn) is actually
equal to

PBðX1;X2; :::;XnÞ ¼
Yn

i¼1

PðXijpaðXiÞÞ ¼
Yn

i¼1

hXijpaðXiÞ (1)

The BN we used for the effective connectivity study is
of linear Gaussian assuming the time series of ROIs are
Gaussian distributed. That is, let node Xi has parent node
Xpðp 6¼ i;Xp 2 paðXiÞÞ, then its conditional distribution is

pðxijpaðxiÞÞ ¼ 1ffiffiffiffiffiffi
2p

p
ri

exp½� 1

2r2
i

ðxi � uiÞ2�; (2)

where ui ¼ li þ
P

Xp2paðXiÞ bpðxp � lpÞ, ui, and ri are, respec-

tively, the conditional mean and conditional variance of
node Xi given its parents pa(Xi), respectively; bp, connec-
tion weight coefficient from parent node Xp to node Xi; ui,
unconditional mean of node Xi; lp, unconditional mean of
parent node Xp.

Bayesian information criterion (BIC) [Schwarz, 1978]
based learning approach was adopted to search for the
highest scored network in the space of possible network
structures. Formula of BIC is given by

BICðGjDÞ � logPðDjG;H�Þ � d

2
logm (3)

in which the first term logPðDjG;H�Þ is the maximized
log-likelihood of data D conditional on H*, which meas-
ures the degree goodness of given H*, the maximum likeli-
hood (ML) estimation of parameters. The second term
d
2 logm is a penalty on the learned network complexity. Pa-
rameter d is the number of independent parameters, and
m is the number of data samples. The BIC-based BN learn
procedure is implemented in the collections of Matlab
functions, Bayesian Net Toolbox (BNT, www.cs.ubc.ca/
�murphyk/Software/BNT/bnt.html). BNT was used to
learn the BN model in this investigation.

To simplify the structure of the learned BN model, we
adopted the step-wise regression to test the significance of
the connection, because the linear Gaussian BN identified
can also be viewed as a set of determined multivariate lin-
ear regression equations [Li et al., 2009; Shachter and Ken-
ley, 1989]. That is, for each node in the Gaussian BN, it
can be considered as the linear regression equation of its
parent nodes in this network, and the weight coefficients
turn to regression coefficients. Thus, the statistical signifi-
cance of the regression coefficients was tested using step-
wise regression. And then for each regression equation,
the powerless variables (parent nodes) were discarded
step by step till all the remnant variables were significant
(P < 0.05). Finally, the set of tested regression equations
were in turn expressed in the form of graph, which was
the conclusively refined BN, that is, the effective connec-
tivity model of DMN [Li et al., 2009].

Effective Connectivity Comparisons

Between NC and AD Groups

We were more interested in examining the effective con-
nectivity difference between AD and NC groups. To do
this, we adopted the randomized permutation test [Gentle

TABLE II. Regions in DMN map of AD group (one sample t-test, FDR, P 5 0.05)

Brain region BA T value

Talairach coordinate

Volumex y z

Posterior cingulate cortex (PCC) 31 7.56 50 �59 36 861
Right inferior temporal cortex (rITC) 20 4.63 65 �35 �5 52
Right inferior parietal cortex (rIPC) 40 7.34 9 �51 21 340
Left inferior parietal cortex (lIPC) 40 6.97 �48 �56 40 279
Medial prefrontal cortex (MPFC) 9 4.75 �9 42 24 255
Left inferior temporal cortex (lITC) 20 4.29 �59 �21 �16 109
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et al., 2004; Hesterberg et al., 2005; Scarff et al., 2004]. See
additional rational in our Discussion section for our prefer-
ence to this approach. The randomized permutation test is
a type of nonparametric statistical test. To use this method
to test the group difference, the reference distribution is
obtained by calculating all possible values of the test statis-
tic under rearrangements of the group labels on the
observed data points. In a separate study by our group [Li
et al., 2010], we proposed two ways to permute the data
and compared both with the parametric counterpart, the
two-sample independent t test. Factors like the number of
permutation, the robustness of the method, and the signal
noise as well as the difference of subjects within group
were all considered and tested by using the synthetic data
and real fMRI data. Accordingly, we adopted the optimal
permutation method to examine the group difference in
effective connectivity in this study. At each iteration of the
test process, the subject-group membership was randomly
assigned for each subject. A BN model for each group was
constructed, and the differences of the connection weight
coefficients between the two groups were taken as the sta-

tistical measure. Statistics for the real two group samples
were calculated. We ran a total of 1,000 permutations (we
found the results of 1,000 permutations are compatible
with the ones obtained with 5,000 permutations) and
assessed the sample distributions for these statistics.
Finally, probabilities of the connections in the BN model of
NC group that were stronger than the ones in AD group as
well as the probabilities of the connections in the model of
AD group that were stronger than the ones in NC group
were examined for each of connections present the BN
model for AD, NC, or both. Thus, we have total of 15 com-
parisons for NC > AD and 12 comparisons for AD > NC.
To correct for the possible inflated type-I errors, multiple
comparisons were corrected using Bonferroni at P ¼ 0.05.

RESULTS

Functional Connectivity Result of the DMN

Figure 1 shows the group DMN results in the NC (left
panel) and AD (right panel), respectively, detected by

Figure 1.

DMN of the NC and AD groups. Axial images show the network for the NC (left panel) and

AD (right panel) groups, respectively. The white capital letters indicate the specific regions in the

DMN. A: PCC, B: MPFC, C: lIPC, D: rIPC, E: lITC, F: rITC, G: lHC, H: rHC. T score bar is

shown on the right (FDR, P ¼ 0.05). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Group ICA followed by one sample t-test with FDR P ¼
0.05. DMN in NC includes PCC/precuneus, MPFC, lITC,
rITC, lHC, rHC, lIPC, and rIPC. DMN in AD mainly
involves PCC, MPFC, lITC, rITC, lIPC, and rIPC.

Difference in DMN Functional Connectivity

Between the NC and AD Groups

As shown in Figure 1, the resting-state DMN in NC is
more intensified in magnitude and more broadly

Figure 2.

Difference in the functional connectivity of DMN between the NC and AD groups (NC vs. AD).

Two sample t-test (FDR, P ¼ 0.05). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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distributed spatially than what seen in AD. To quantify
the network group difference, we used voxel-wise two
sample t-test. Figure 2 and Table III display the functional

connectivity differences between the two groups. The fol-

lowing areas of the DMN demonstrated reduced activity

in AD: PCC, MPFC, lIPC, lITC, and bilateral HC. There

was no region in DMN, which was increased in AD com-

pared to NC.

Relationship Between Functional Connectivity

Measures and Disease Severity

The results of linear regression analysis showed the rela-
tionship between the disease severity and the functional
connectivity measures obtained from the core regions used
in the subsequent BN analysis. Significant MMSE correla-
tions with the connectivity intensity were found at PCC
(r ¼ 0.55, P ¼ 0.0355), rIPC (r ¼ 0.55, P ¼ 0.0342), and
rITC (r ¼ 0.52, P ¼ 0.0494). Similarly, significant MMSE cor-
relations with the connectivity extent were found at PCC (r
¼ 0.56, P ¼ 0.0303) and rITC (r ¼ 0.52, P ¼ 0.0476). We

noted that no attempt was made to correct for the multiple
comparisons over the number of these core regions, and no
core region showed statistical correlation with CDR index.

Within-Group DMN Effective Connectivity

The two panels of Figure 3 display the effective connec-
tivity models learned by the linear Gaussian BN, for the
NC and AD groups, respectively. Connection directions
and the corresponding weight coefficients of the BN mod-
els are given in Table IV.

Connections that were observed both in NC and AD
groups included lIPC ! PCC, lIPC! rIPC, lITC ! lIPC,
and lITC ! rITC, all have larger weight coefficients in NC
except lITC ! lIPC.

Connections lHC ! lIPC, lITC ! rHC, lITC! rIPC,
rHC ! lIPC, rHC ! MPFC, rHC ! PCC, rITC ! lIPC,
and PCC ! MPFC are present only in the NC group, not
in the AD group. Although connections lHC ! PCC, lIPC
! MPFC, PCC ! rIPC, PCC ! rITC, and rITC ! MPFC
are present only in the AD group.

TABLE III. Regions of the DMN demonstrating reduced activity in AD group (two sample t-test, FDR, P 5 0.05)

Brain region BA T value

Talairach coordinate

Volumex y z

Posterior cingulate cortex (PCC) 29 8.42 �3 �43 10 452
Medial prefrontal cortex (MPFC) 10 6.27 3 44 13 173
Left inferior parietal cortex (lIPC) 40 5.64 �50 �51 28 55
Left inferior temporal cortex (lITC) 21 5.54 �53 �21 �9 36
Left hippocampus (lHC) 36 3.77 �33 �19 �16 28
Right hippocampus (rHC) 37 3.55 24 �18 �13 19

Figure 3.

Effective connectivity models (BN models) of DMN in NC (left

panel) and AD group (right panel). The color gradation (with the

color bar) is proportional to the connection strength. Connec-

tions are tested with significance level P ¼ 0.05. The asterisk (*)

on connection indicates the connection in NC is significantly

stronger than in AD while the cross (þ) points out the oppo-

site. The 3D coordinate system depicts the Talairach system

where x-axis is the left/right of the brain, y-axis back/front of

the brain, and the z-axis bottom to the top of the brain. Each of

the brain regions is plotted at its center in the figure. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Connections between lHC and rHC, lITC and lHC, rITC
and rIPC are all present in the BN models of both groups
but with reversed directionality.

Between-Group DMN Effective Connectivity

Difference

Randomized permutation test provided the probabilities
of differences in connections between groups, as shown in
Table V. Between-group connection differences that are
significant with Bonferroni correction are highlighted as
bold fonts. The first two columns of Table V display the
type-I errors of the connections in NC stronger than the
ones in AD (NC > AD), and the other two columns show
the type-I errors for the opposite direction (AD > NC). We
found that connections lHC ! lIPC, lHC ! rHC, lITC !
lHC, lITC ! rHC, rHC ! lIPC, rHC ! MPFC, and rHC

! PCC were greater in NC than the corresponding ones
in AD (Bonferroni P ¼ 0.05). In the opposite direction, we
found that connection rHC ! lHC was less strong in NC
than in AD (Bonferroni P ¼ 0.05).

DISCUSSION

In this study, we first used Group ICA to detect func-
tional DMN connectivity in the NC and AD groups,
respectively. We then examined functional connectivity
difference between AD and NC groups via two-sample t-
test. Core regions in the network that showed significant
reductions in AD include PCC, MPFC, IPC, ITC, and HC.
Our DMN findings reconfirmed reports from several pre-
vious studies [Greicius et al., 2004; Wang et al., 2006].
Interestingly, the connectivity and spatial extents are asso-
ciated with the disease severity (MMSE) in several DMN
core regions such as PCC, rIPC, and rITC.

Furthermore, we used linear Gaussian BN to investigate
the DMN effective connectivity in each group. In conjunc-
tion with BN, we used random permutation test to assess
the effective connectivity group difference. Significant and
multiple differences were uncovered in patterns of effec-
tive connectivity in brain regions that were known to be
affected by AD.

TABLE IV. List of connections and the corresponding

weight coefficients in the BN models of NC group and

AD group

Connections

Weight Coefficients

NC AD

I lIPC ! PCC 0.90 0.68
lIPC ! rIPC 0.94 0.27
lITC ! lIPC 0.62 0.98
lITC! rITC 0.91 0.51

II lHC ! lIPC* 0.46
lITC! rIPC �0.75
lITC ! rHC* 0.37
rHC ! lIPC* �0.40
rHC! MPFC* 0.40
rHC ! PCC* 0.29
rITC ! lIPC 0.36
PCC ! MPFC 0.29

III lHC ! PCC 0.36
lIPC! MPFC 0.30
PCC ! rIPC 0.63
PCC ! rITC 0.26
rITC ! MPFC 0.36

IV lHC ! rHC* 0.77
rHC ! lHCþ 0.29
lITC ! lHC* 0.50
lHC ! lITC 0.38
rITC ! rIPC 0.60
rIPC ! rITC 0.27

Note: Connections in rows of part I co-exist in the two groups.
Connections in rows of parts II and III are only present in NC or
AD groups respectively. Connections in rows of part IV show
connections with reversed directions in the two groups. All the
connections listed in the table survived from the statistical testing
(significance level: P < 0.05) during the stepwise regression analy-
sis within group. The asterisk (*) on connection indicates the con-
nection in NC is significantly stronger than in AD while the cross
(þ) points out the opposite determined from the permuatation
test with multiple comparison Bonferroni, P ¼ 0.05.

TABLE V. Results of comparison of the BN models in

NC and AD groups derived from permutation test

NC > AD AD > NC

Connections
in NC Probabilities

Connections
in AD Probabilities

lHC ! lIPC 0 lHC ! lITC 0.012
lHC ! rHC 0 lHC ! PCC 0.095
lIPC ! PCC 0.260 lIPC ! MPFC 0.071
lIPC ! rIPC 0.066 lIPC ! PCC 0.740
lITC ! lHC 0 lIPC ! rIPC 0.934
lITC ! lIPC 0.879 lITC ! lIPC 0.121
lITC ! rHC 0 lITC ! rITC 0.980
lITC! rIPC 0.020 PCC ! rIPC 0.008
lITC ! rITC 0.020 PCC ! rITC 0.016
PCC ! MPFC 0.142 rHC ! lHC 0

rHC ! lIPC 0 rIPC ! rITC 0.063
rHC ! MPFC 0.001 rITC ! MPFC 0.077
rHC ! PCC 0.002

rITC ! lIPC 0.109
rITC ! rIPC 0.030

Note: The column ‘‘NC > AD’’ shows the type-I error probabilities
(in the column ‘‘probabilities’’) of the connections in NC group
that are stronger than the ones in AD group. And the column
‘‘AD > NC’’ shows the contrary case. Connections marked in bold
represent the hypothesis ‘‘NC > AD’’ or ‘‘AD > NC’’ are reliable
with multiple comparison Bonferroni, P ¼ 0.05.
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About Methodology

Effective connections pointed to a specific brain region
are indicative that activity of this region is statistically de-
pendent on the activities of regions the connection origi-
nated from (parent regions). In other words, knowledge
about the activity of this region can be learned based on
the ones of its parents. The BN-based effective connection
structures allow us to examine the difference between AD
and NC in a more meaningful way, raising the possibility
to use BN as a means to help to understand/reconfirm the
neuronal mechanism of AD and even eventually as a sen-
sitive biomarker for AD.

As an effective connectivity tool, the BN approach
simultaneously learns the structure of the effective connec-
tivity and estimates the associated parameters. This is in
contrast to other effective connectivity techniques such as
SEM, DCM, and GCM. These techniques are often used to
determine whether a previously known or hypothesized
neural system model is valid other than to learn a suitable
global model from the data. The structures of those mod-
els were derived independently or by anatomical con-
straints. Especially for resting-state analysis, it is more
difficult to make the prior models for the effective connec-
tivity. The current result showed the BN can learn large or
unexplored networks from resting-state fMRI data without
proper prior models or knowledge.

In this study, the functional and effective connectivity
analyses were applied to the same dataset successively
and referred to as ICA þ BN procedure below. In other
words, the core regions in the DMN were first identified
from Group ICA and were subsequently used to constitute
the nodes in the BN effective connectivity analysis. We
noticed that our way of using ICA þ BN procedure was
not conceptually novel. Zheng and Rajapakse [2006] used
BN to learn the effective connections in silent word read-
ing and counting Stroop tasks. In another study, Rajapakse
et al. [2007] used the dynamic BN (DBN), an extension of
BN, to learn the effective connectivity in the same tasks
[Rajapakse and Zhou, 2007]. Nodes in these two studies
were the activated brain regions identified from first per-
forming SPM analysis over the same dataset (SPM þ BN/
DBN). Additionally, Kim et al. [2008] used DBN to exam-
ine the effective connectivity difference in schizophrenia
during an auditory paradigm, and ICA was used to
reduce the noise in all the fMRI data [Kim et al., 2008].
And the nodes in the DBN were also the regions showing
significant activity from SPM analysis (ICA þ SPM þ
DBN). Steven et al. [2009] and Liao et al. [2010] used ‘‘ICA
þ Granger causality analysis’’ to learn the interaction pat-
terns between resting brain networks, the nodes of their
Granger procedure were based on ICA over fMRI data
from subjects included in their study [Liao et al., 2010; Ste-
vens et al., 2009].

Despite the repeated use of the conceptually same pro-
cedures discussed above in a number of studies, the
assessment of the reliability (or the statistical errors) of

the nodes is an important issue. Possible solution includes
the use of independent dataset for the node definition or
proper statistical inference to address this error.

We note that our permutation test (discussed more
below) was only for the constructed BN but not for the
selection of the ICA-based core regions. Although the
within-group one sample t-test with the corrected P-value
(using FDR, P ¼ 0.05) for the Group ICA procedure might
be adequate for assessing the type-I error in defining the
core regions of the DMN for each group, we also exam-
ined post hoc defining the core regions irrespective the
group membership, use of core regions reported previ-
ously, and the Group ICA analysis in a randomly parti-
tioned training dataset (60% of the cases). In terms of the
BN structures obtained from core regions defined by these
different approaches, we note a number of connections
common to all approaches were preserved. More interest-
ingly and importantly, permutation results demonstrated
that group differences between AD and NC can be
detected using any of these different ROI definition
approaches, but different levels of detecting sensitivity, as
expected. With these additional analyses, we recommend
the use of AD/NC specific core DMN regions for the
effective connectivity analysis.

As mentioned earlier, we used the nonparametric
randomized permutation test to examine the BN-based
effective connectivity patterns between NC and AD
groups. The difference in connection weight coefficients
between the two groups was taken as the test statistic. By
calculating all the possible values of this statistic through
regrouping the subjects, the sampling distribution of the
test statistic can be obtained and used to examine the
value of this statistic occurring by chance under the unper-
muted group membership. This randomized permutation
test is performed under the basic premise that all the
tested groups are assumed to be possibly equivalent. As a
distribution-free testing method, permutation test is appli-
cable regardless of whether or not its theoretical distribu-
tion is known.

We noticed that the permutation test addressed only the
error sources related to the subject level (group member-
ship) but not the measurement errors in the temporal
fMRI time series extracted from each ROI. We believe that
error source was accounted in the BN learning process (so
the ML approach assuming the data is Gaussian) and it
contributed to the uncertainty (type-I error) of the group
difference. In addition to being accounted for in the BN
parameter estimation approach, other approach such as
Bootstrap has also been suggested. The Bootstrap method,
however, may have some unexpected side effects when
the temporality of the data is lost out of the resampling.
With these beliefs, we did not attempt to address this error
source as part of our permutation test or using any other
alternative.

We also note that the multiple comparison correction
with regards to the permutation test is unnecessary for the
omnibus hypothesis that the BN learned network in AD is
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the same as the one in NC [Nichols and Holmes, 2001].
We also notice that the number of occurrences correspond-
ing to the type-I error threshold (P ¼ 0.05) can be used in
inference to the individual connection examination. To be
confirmative and to show how strong the group difference
is, we noted the connections that were significant even
with correction by the very conservative Bonferroni proce-
dure. Of course, all these considerations call for larger and
careful planned future studies.

A potential implementation of the integrated ICA þ BN
procedure in practical use can be justified, for example,
with the existence of a normative database for normal
healthy controls. Thus, the normal DMN core regions are
unchanged, and the patient group’s core region will be
constructed for new subjects. If this integrated procedure
can be validated in additional future studies with
adequate sensitivity and specificity, the concerns on the
repeated use of the same dataset for first ICA and then
BN can be lessened.

About Resting-State Network

Our BN-based effective connectivity findings can be
briefly summarized as below: compared to NC, the con-
nectivity changes in AD included (1) the loss of connec-
tions from lHC to lIPC, from lITC to rHC, from rHC to
lIPC, MPFC and PCC and (2) connections from rHC to
lHC, from lHC to lITC, and from rIPC to rITC all changed
the directions. Overall, total number of connections in AD
is lower than the one in the NC (15 in NC and 12 in AD),
a reflection of disrupted connections, consistent with the
functional connectivity findings.

The disrupted connection between PCC and HC is
hypothesized to be the mechanism behind PCC hypome-
tabolism and hypoperfusion in early AD [Greicius et al.,
2004; Wang et al., 2006]. In our study, the direct and direc-
tional connection from rHC to PCC in NC are switched to
lHC to PCC in AD group, the former connection being sig-
nificant with Bonferroni P ¼ 0.05, but not the latter. An
indirect link from lHC to lIPC and then PCC in NC may
be replaced in the AD group with a weaker lHC to lITC to
lIPC to PCC. These alternations provided additional evi-
dence of the disrupted connections between PCC and HC,
or more generally between PCC and MTL [Greicius et al.,
2004]. As indicated in Greicius et al. [2004], at the neuronal
level, connectivity between these two regions has been
demonstrated in animal studies [Lavenex et al., 2002; Mor-
ris et al., 1999; Suzuki and Amaral, 1994; Vogt et al., 1992].

The most prominent change in connectivity is that the
connections of the rHC to other regions, except lHC,
within the BN were all statistically in-distinguishable from
0. The rHC is typically a larger structure than the left in
volumetric studies [Pedraza et al., 2004], with evidence
that it atrophies faster than the lHC in AD [Barnes et al.,
2005; Bigler et al., 2000; Hashimoto et al., 2001; Lehtovirta
et al., 1995]. Together with our findings, this implies an

increased right hippocampal pathological and functional
burden in AD [Geroldi et al., 2000; Soininen et al., 1995].
Reduced connectivity between the HC and the PCC is
hypothesized to explain the decreased metabolism in the
PCC in early AD [Minoshima et al., 1997]. Our finding is
consistent with Greicius et al. [2004]’s study showing
decreased HC-PCC connectivity and is also compatible
with a disconnection hypothesis.

In addition, our findings indicate global reduction in
connectivity between all nodes within the DMN, with no-
table loss of intrahemispheric connectivity. Importantly,
there is also clear reorganization of MPFC and PCC con-
nectivity with other regional of the DMN. These two mid-
line regions are the most prominently activated regions
within the DMN in healthy individuals [Andrews-Hanna
et al., 2007; Buckner et al., 2005, 2008]. They represent a
direct connection between frontal and posterior DMN net-
works, which appear to be lost in AD [Buckner and Vin-
cent, 2007; Buckner et al., 2005; Raichle and Snyder, 2007].
This is consistent with observations of the PCC being a
region of early and prominent amyloid pathology [Braak
and Braak, 1991; Buckner et al., 2005; Forsberg et al., 2008;
Fripp et al., 2008; Klunk et al., 2004; Mintun et al., 2006;
Pike et al., 2007] and its relationship to hippocampal func-
tion [Pike et al., 2007].

Our results showed the absence of IPC to MPFC in NC
and the presence of this connection in AD group. In a pre-
vious study, decreased positive correlations between pre-
frontal and parietal regions were observed in AD patients.
It is quite possible that our MPFC ROI excluded the pre-
frontal region in the voxel-based analysis. On the other
hand, however, our findings also support the use of fron-
tal-parietal connection difference between AD and NC as a
biomarker [Wang et al., 2007]. As noted by the authors of
the same study, there is a need to consider not only the
positive inter-regional correlations but also the negative
one [Fox et al., 2005; Fransson, 2005; Wang et al., 2007].
These patterns of change in the DMN may represent early
biomarkers of change associated with AD pathology. It
will be important to further explore the natural history of
these patterns in earlier clinical disease and risk for AD to
determine their value in prediction of impending demen-
tia, prognosis, and for the development of preventative
treatment strategies.

In addition to examining primarily the group differences
based on the BN metrics, we also tested the association
between disease severity measures (MMSE and CDR) and
the functional connectivity measures represented by inten-
sity and extent of core regions of the DMN in the AD sub-
jects. Both connectivity intensities and/or connectivity
extents were found positively correlated with MMSE in a
number of these core brain regions (P < 0.05). MMSE is
for assessing the ability in arithmetic, memory, and orien-
tation of subjects in clinic [Folstein et al., 1975] and has
been widely used in all major AD studies (such as AD
Neuroimaging Initiative, ADNI) and for routine clinical
diagnoses. Consistent with the memory deficit as the
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common landmark in early AD patients [Perry et al., 2000;
Schmand et al., 2000] and the roles the PCC, rITC, and
rIPC played in the memory process, results of this study
suggested that these regions are correlated with the dis-
ease severity. Particularly, PCC is suggested to be involved
in episodic memory function [Della-Maggiore et al., 2000;
Greicius et al., 2004; Maddock et al., 2001; Maguire and
Mummery, 1999], and it is the most common region show-
ing early metabolic and perfusion abnormalities in AD
[Greicius et al., 2004] or even before the onset of the dis-
ease [Reiman et al., 1996]. As the end of ventral visual
stream [Tanaka, 1996], rITC is considered to be the reposi-
tory of long-term memory processing [Miyashita, 1993]. A
previous correlation study of DMN has observed
decreased activity in the region of rITC in AD [Wang
et al., 2007]. In addition, the bilateral IPC is also frequently
activated during working memory tasks in both humans
and animals [Binder et al., 1999; Gusnard and Raichle,
2001], and our results demonstrated the intensity of resting
activity in rIPC was correlated with the MMSE score.
Overall, the positive correlations in PCC, rITC, and rIPC
with MMSE might be indicative that the AD patients with
lower MMSE score were associated with more inhibited
resting activity in intensity or extent.

In conclusion, besides confirming findings from previ-
ous study about the different functional connectivity in
AD patients, our study finds significant differences
between AD and NC in terms of the BN-based effective
connectivity with the use of random permutation test. In
addition to its application to the study of AD, the
approach used in this study could potentially be useful to
establish image-based markers in other neurodegenerative
diseases such as Parkinson disease. We also expect that it
might be used in the study of normal aging process serv-
ing as a potentially sensitive marker. Of course, additional
studies are needed to confirm these potential broader
applications, and it is also our interest to further investi-
gate this approach and others to explore the full potential
of the richness of the resting fMRI technique.
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